
Using the Qpid Messaging API

Cross-Platform AMQP Messaging

Using the Qpid Messaging API: Cross-Platform AMQP Messaging

iii

Table of Contents
1. Using the Qpid Messaging API ... 1

1.1. A Simple Messaging Program in C++ .. 1
1.2. A Simple Messaging Program in Python ... 2
1.3. A Simple Messaging Program in .NET C# .. 3
1.4. Addresses .. 4

1.4.1. Address Strings .. 6
1.4.2. Subjects .. 6
1.4.3. Address String Options ... 8
1.4.4. Address String Grammar ... 14

1.5. Sender Capacity and Replay ... 16
1.6. Receiver Capacity (Prefetch) ... 16
1.7. Acknowledging Received Messages ... 16
1.8. Receiving Messages from Multiple Sources ... 17
1.9. Transactions ... 18
1.10. Connections .. 18

1.10.1. Connection URLs ... 19
1.10.2. Connection Options ... 19

1.11. Maps and Lists in Message Content .. 21
1.11.1. Qpid Maps and Lists in Python ... 22
1.11.2. Qpid Maps and Lists in C++ ... 23
1.11.3. Qpid Maps and Lists in .NET ... 24

1.12. The Request / Response Pattern ... 26
1.13. Performance Tips .. 27
1.14. Cluster Failover .. 27
1.15. Logging ... 28

1.15.1. Logging in C++ .. 28
1.15.2. Logging in Python .. 29

1.16. The AMQP 0-10 mapping .. 29
1.16.1. 0-10 Message Property Keys ... 31

1.17. Using Message Groups ... 32
1.17.1. Creating Message Group Queues ... 32
1.17.2. Sending Grouped Messages .. 33
1.17.3. Receiving Grouped Messages .. 34

2. The .NET Binding for the C++ Messaging Client .. 35
2.1. .NET Binding for the C++ Messaging Client Component Architecture 35
2.2. .NET Binding for the C++ Messaging Client Examples .. 36
2.3. .NET Binding Class Mapping to Underlying C++ Messaging API 38

2.3.1. .NET Binding for the C++ Messaging API Class: Address 38
2.3.2. .NET Binding for the C++ Messaging API Class: Connection 39
2.3.3. .NET Binding for the C++ Messaging API Class: Duration 41
2.3.4. .NET Binding for the C++ Messaging API Class: FailoverUpdates 42
2.3.5. .NET Binding for the C++ Messaging API Class: Message 43
2.3.6. .NET Binding for the C++ Messaging API Class: Receiver 46
2.3.7. .NET Binding for the C++ Messaging API Class: Sender 47
2.3.8. .NET Binding for the C++ Messaging API Class: Session 49
2.3.9. .NET Binding Class: SessionReceiver .. 51

iv

List of Tables
1.1. Address String Options .. 12
1.2. Node Properties .. 13
1.3. Link Properties ... 14
1.4. Connection Options ... 20
1.5. Map and List Representation in Supported Languages ... 21
1.6. Python Datatypes in Maps .. 22
1.7. C++ Datatypes in Maps ... 24
1.8. Datatype Mapping between C++ and .NET binding ... 25
1.9. Mapping to AMQP 0-10 Message Properties ... 30
2.1. .NET Binding for the C++ Messaging Client Component Architecture 35
2.2. Example : Client - Server ... 36
2.3. Example : Map Sender – Map Receiver .. 36
2.4. Example : Spout - Drain ... 37
2.5. Example : Map Callback Sender – Map Callback Receiver ... 37
2.6. Example - Declare Queues ... 37
2.7. Example: Direct Sender - Direct Receiver ... 37
2.8. Example: Hello World ... 37
2.9. .NET Binding for the C++ Messaging API Class: Address .. 38
2.10. .NET Binding for the C++ Messaging API Class: Connection .. 39
2.11. .NET Binding for the C++ Messaging API Class: Duration ... 41
2.12. .NET Binding for the C++ Messaging API Class: FailoverUpdates 42
2.13. .NET Binding for the C++ Messaging API Class: Message ... 43
2.14. .NET Binding for the C++ Messaging API Class: Receiver ... 46
2.15. .NET Binding for the C++ Messaging API Class: Sender .. 47
2.16. .NET Binding for the C++ Messaging API Class: Session ... 49

v

List of Examples
1.1. "Hello world!" in C++ ... 1
1.2. "Hello world!" in Python ... 2
1.3. "Hello world!" in .NET C# ... 3
1.4. Queues .. 5
1.5. Topics ... 5
1.6. Using subjects .. 7
1.7. Subjects with multi-word keys .. 7
1.8. Assertions on Nodes ... 9
1.9. Creating a Queue Automatically .. 10
1.10. Browsing a Queue ... 10
1.11. Using the XML Exchange .. 11
1.12. Receiving Messages from Multiple Sources ... 17
1.13. Transactions ... 18
1.14. Specifying Connection Options in C++, Python, and .NET .. 19
1.15. Sending Qpid Maps and Lists in Python .. 22
1.16. Sending Qpid Maps and Lists in C++ ... 23
1.17. Sending Qpid Maps and Lists in .NET C# ... 24
1.18. Request / Response Applications in C++ ... 26
1.19. Tracking cluster membership ... 27
1.20. Accessing the AMQP 0-10 Message Timestamp in Python ... 31
1.21. Accessing the AMQP 0-10 Message Timestamp in C++ ... 32
1.22. Message Group Queue Creation - Python .. 32
1.23. Message Group Queue Creation - C++ .. 32
1.24. Message Group Queue Creation - Java .. 32
1.25. Sending Grouped Messages - Python .. 33
1.26. Sending Grouped Messages - C++ ... 33
1.27. Sending Grouped Messages - Java ... 34

1

Chapter 1. Using the Qpid Messaging
API

The Qpid Messaging API is quite simple, consisting of only a handful of core classes.

• A message consists of a standard set of fields (e.g. subject, reply-to), an application-defined set
of properties, and message content (the main body of the message).

• A connection represents a network connection to a remote endpoint.

• A session provides a sequentially ordered context for sending and receiving messages. A session is
obtained from a connection.

• A sender sends messages to a target using the sender.send method. A sender is obtained from a
session for a given target address.

• A receiver receives messages from a source using the receiver.fetch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

1.1. A Simple Messaging Program in C++
The following C++ program shows how to create a connection, create a session, send messages using a
sender, and receive messages using a receiver.

Example 1.1. "Hello world!" in C++

 #include <qpid/messaging/Connection.h>
 #include <qpid/messaging/Message.h>
 #include <qpid/messaging/Receiver.h>
 #include <qpid/messaging/Sender.h>
 #include <qpid/messaging/Session.h>

 #include <iostream>

 using namespace qpid::messaging;

 int main(int argc, char** argv) {
 std::string broker = argc > 1 ? argv[1] : "localhost:5672";
 std::string address = argc > 2 ? argv[2] : "amq.topic";
 std::string connectionOptions = argc > 3 ? argv[3] : "";

 Connection connection(broker, connectionOptions);
 try {
 connection.open(); 1

 Session session = connection.createSession(); 2

 Receiver receiver = session.createReceiver(address); 3

 Sender sender = session.createSender(address); 4

Using the Qpid Messaging API

2

 sender.send(Message("Hello world!"));

 Message message = receiver.fetch(Duration::SECOND * 1); 5

 std::cout << message.getContent() << std::endl;
 session.acknowledge(); 6

 connection.close(); 7

 return 0;
 } catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
 }
 }

1 Establishes the connection with the messaging broker.
2 Creates a session object on which messages will be sent and received.
3 Creates a receiver that receives messages from the given address.
4 Creates a sender that sends to the given address.
5 Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next

message.
6 Acknowledges receipt of all fetched messages on the session. This informs the broker that the

messages were transferred and processed by the client successfully.
7 Closes the connection, all sessions managed by the connection, and all senders and receivers managed

by each session.

1.2. A Simple Messaging Program in Python
The following Python program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver.

Example 1.2. "Hello world!" in Python

 import sys
 from qpid.messaging import *

 broker = "localhost:5672" if len(sys.argv)<2 else sys.argv[1]
 address = "amq.topic" if len(sys.argv)<3 else sys.argv[2]

 connection = Connection(broker)

 try:
 connection.open() 1

 session = connection.session() 2

 sender = session.sender(address) 3

 receiver = session.receiver(address) 4

 sender.send(Message("Hello world!"));

 message = receiver.fetch(timeout=1) 5

Using the Qpid Messaging API

3

 print message.content
 session.acknowledge() 6

 except MessagingError,m:
 print m
 finally:
 connection.close() 7

1 Establishes the connection with the messaging broker.
2 Creates a session object on which messages will be sent and received.
4 Creates a receiver that receives messages from the given address.
3 Creates a sender that sends to the given address.
5 Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next

message.
6 Acknowledges receipt of all fetched messages on the session. This informs the broker that the

messages were transfered and processed by the client successfully.
7 Closes the connection, all sessions managed by the connection, and all senders and receivers managed

by each session.

1.3. A Simple Messaging Program in .NET C#
The following .NET C# 1 program shows how to create a connection, create a session, send messages
using a sender, and receive messages using a receiver.

Example 1.3. "Hello world!" in .NET C#

 using System;
 using Org.Apache.Qpid.Messaging; 1

 namespace Org.Apache.Qpid.Messaging {
 class Program {
 static void Main(string[] args) {
 String broker = args.Length > 0 ? args[0] : "localhost:5672";
 String address = args.Length > 1 ? args[1] : "amq.topic";

 Connection connection = null;
 try {
 connection = new Connection(broker);
 connection.Open(); 2

 Session session = connection.CreateSession(); 3

 Receiver receiver = session.CreateReceiver(address); 4

 Sender sender = session.CreateSender(address); 5

 sender.Send(new Message("Hello world!"));

 Message message = new Message();
 message = receiver.Fetch(DurationConstants.SECOND * 1); 6

 Console.WriteLine("{0}", message.GetContent());

1 The .NET binding for the Qpid C++ Messaging API applies to all .NET Framework managed code languages. C# was chosen for illustration
purposes only.

Using the Qpid Messaging API

4

 session.Acknowledge(); 7

 connection.Close(); 8

 } catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (null != connection)
 connection.Close();
 }
 }
 }
 }

1 Permits use of Org.Apache.Qpid.Messaging types and methods without explicit namespace
qualification. Any .NET project must have a project reference to the assembly file
Org.Apache.Qpid.Messaging.dll in order to obtain the definitions of the .NET Binding
for Qpid Messaging namespace.

2 Establishes the connection with the messaging broker.
3 Creates a session object on which messages will be sent and received.
4 Creates a receiver that receives messages from the given address.
5 Creates a sender that sends to the given address.
6 Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next

message.
7 Acknowledges receipt of all fetched messages on the session. This informs the broker that the

messages were transfered and processed by the client successfully.
8 Closes the connection, all sessions managed by the connection, and all senders and receivers managed

by each session.

1.4. Addresses
An address is the name of a message target or message source. 2 The methods that create senders and
receivers require an address. The details of sending to a particular target or receiving from a particular
source are then handled by the sender or receiver. A different target or source can be used simply by using
a different address.

An address resolves to a node. The Qpid Messaging API recognises two kinds of nodes, queues and topics
3. A queue stores each message until it has been received and acknowledged, and only one receiver can
receive a given message 4. A topic immediately delivers a message to all eligible receivers; if there are no
eligible receivers, it discards the message. In the AMQP 0-10 implementation of the API, 5 queues map
to AMQP queues, and topics map to AMQP exchanges. 6

In the rest of this tutorial, we present many examples using two programs that take an address as a command
line parameter. spout sends messages to the target address, drain receives messages from the source

2In the programs we have just seen, we used amq.topic as the default address if none is passed in. This is the name of a standard exchange that
always exists on an AMQP 0-10 messaging broker.
3The terms queue and topic here were chosen to align with their meaning in JMS. These two addressing 'patterns', queue and topic, are sometimes
refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic occurs alone, it
refers to a Messaging API topic, not the topic exchange.
4There are exceptions to this rule; for instance, a receiver can use browse mode, which leaves messages on the queue for other receivers to read.
5The AMQP 0-10 implementation is the only one that currently exists.
6In AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging API also allows a sender to send messages to a queue;
internally, Qpid implements this by sending the message to the default exchange, with the name of the queue as the routing key. The Messaging
API also allows a receiver to receive messages from a topic; internally, Qpid implements this by setting up a private subscription queue for the
receiver and binding the subscription queue to the exchange that corresponds to the topic.

Using the Qpid Messaging API

5

address. The source code is available in C++, Python, and .NET C# and can be found in the examples
directory for each language. These programs can use any address string as a source or a destination, and
have many command line options to configure behavior—use the -h option for documentation on these
options. 7 The examples in this tutorial also use the qpid-config utility to configure AMQP 0-10 queues
and exchanges on a Qpid broker.

Example 1.4. Queues

Create a queue with qpid-config, send a message using spout, and read it using drain:

 $ qpid-config add queue hello-world
 $./spout hello-world
 $./drain hello-world

 Message(properties={spout-id:c877e622-d57b-4df2-bf3e-6014c68da0ea:0}, content='')

The queue stored the message sent by spout and delivered it to drain when requested.

Once the message has been delivered and and acknowledged by drain, it is no longer available on the
queue. If we run drain one more time, no messages will be retrieved.

 $./drain hello-world
 $

Example 1.5. Topics

This example is similar to the previous example, but it uses a topic instead of a queue.

First, use qpid-config to remove the queue and create an exchange with the same name:

 $ qpid-config del queue hello-world
 $ qpid-config add exchange topic hello-world

Now run drain and spout the same way we did in the previous example:

 $./spout hello-world
 $./drain hello-world
 $

Topics deliver messages immediately to any interested receiver, and do not store messages. Because there
were no receivers at the time spout sent the message, it was simply discarded. When we ran drain, there
were no messages to receive.

Now let's run drain first, using the -t option to specify a timeout in seconds. While drain is waiting for
messages, run spout in another window.

7Currently, the C++, Python, and .NET C# implementations of drain and spout have slightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.

Using the Qpid Messaging API

6

First Window:

 $./drain -t 30 hello-word

Second Window:

 $./spout hello-word

Once spout has sent a message, return to the first window to see the output from drain:

 Message(properties={spout-id:7da2d27d-93e6-4803-8a61-536d87b8d93f:0}, content='')

You can run drain in several separate windows; each creates a subscription for the exchange, and each
receives all messages sent to the exchange.

1.4.1. Address Strings
So far, our examples have used address strings that contain only the name of a node. An address string
can also contain a subject and options.

The syntax for an address string is:

 address_string ::= <address> [/ <subject>] [; <options>]
 options ::= { <key> : <value>, ... }

Addresses, subjects, and keys are strings. Values can be numbers, strings (with optional single or double
quotes), maps, or lists. A complete BNF for address strings appears in Section 1.4.4, “Address String
Grammar”.

So far, the address strings in this tutorial have only used simple names. The following sections show how
to use subjects and options.

1.4.2. Subjects
Every message has a property called subject, which is analogous to the subject on an email message. If no
subject is specified, the message's subject is null. For convenience, address strings also allow a subject.
If a sender's address contains a subject, it is used as the default subject for the messages it sends. If a
receiver's address contains a subject, it is used to select only messages that match the subject—the matching
algorithm depends on the message source.

In AMQP 0-10, each exchange type has its own matching algorithm. This is discussed in Section 1.16,
“The AMQP 0-10 mapping”.

Note

Currently, a receiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. Support for subject filtering on queues will be implemented soon.

Using the Qpid Messaging API

7

Example 1.6. Using subjects

In this example we show how subjects affect message flow.

First, let's use qpid-config to create a topic exchange.

 $ qpid-config add exchange topic news-service

Now we use drain to receive messages from news-service that match the subject sports.

First Window:

 $./drain -t 30 news-service/sports

In a second window, let's send messages to news-service using two different subjects:

Second Window:

 $./spout news-service/sports
 $./spout news-service/news

Now look at the first window, the message with the subject sports has been received, but not the message
with the subject news:

 Message(properties={qpid.subject:sports, spout-id:9441674e-a157-4780-a78e-f7ccea998291:0}, content='')

If you run drain in multiple windows using the same subject, all instances of drain receive the messages
for that subject.

The AMQP exchange type we are using here, amq.topic, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa.news, usa.weather, europe.news, or
europe.weather. The receiver's subject can include wildcard characters— “#” matches one or more
words in the message's subject, “*” matches a single word. For instance, if the subject in the source address
is *.news, it matches messages with the subject europe.news or usa.news; if it is europe.#, it
matches messages with subjects like europe.news or europe.pseudo.news.

Example 1.7. Subjects with multi-word keys

This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let's use drain with the subject *.news to listen for messages in which the second word of the key is
news.

First Window:

 $./drain -t 30 news-service/*.news

Using the Qpid Messaging API

8

Now let's send messages using several different two-word keys:

Second Window:

 $./spout news-service/usa.news
 $./spout news-service/usa.sports
 $./spout news-service/europe.sports
 $./spout news-service/europe.news

In the first window, the messages with news in the second word of the key have been received:

 Message(properties={qpid.subject:usa.news, spout-id:73fc8058-5af6-407c-9166-b49a9076097a:0}, content='')
 Message(properties={qpid.subject:europe.news, spout-id:f72815aa-7be4-4944-99fd-c64c9747a876:0}, content='')

Next, let's use drain with the subject #.news to match any sequence of words that ends with news.

First Window:

 $./drain -t 30 news-service/#.news

In the second window, let's send messages using a variety of different multi-word keys:

Second Window:

 $./spout news-service/news
 $./spout news-service/sports
 $./spout news-service/usa.news
 $./spout news-service/usa.sports
 $./spout news-service/usa.faux.news
 $./spout news-service/usa.faux.sports

In the first window, messages with news in the last word of the key have been received:

 Message(properties={qpid.subject:news, spout-id:cbd42b0f-c87b-4088-8206-26d7627c9640:0}, content='')
 Message(properties={qpid.subject:usa.news, spout-id:234a78d7-daeb-4826-90e1-1c6540781eac:0}, content='')
 Message(properties={qpid.subject:usa.faux.news, spout-id:6029430a-cfcb-4700-8e9b-cbe4a81fca5f:0}, content='')

1.4.3. Address String Options
The options in an address string can contain additional information for the senders or receivers created
for it, including:

• Policies for assertions about the node to which an address refers.

Using the Qpid Messaging API

9

For instance, in the address string my-queue; {assert: always, node:{ type:
queue }}, the node named my-queue must be a queue; if not, the address does not resolve to a
node, and an exception is raised.

• Policies for automatically creating or deleting the node to which an address refers.

For instance, in the address string xoxox ; {create: always}, the queue xoxox is created, if
it does not exist, before the address is resolved.

• Extension points that can be used for sender/receiver configuration.

For instance, if the address for a receiver is my-queue; {mode: browse}, the receiver works in
browse mode, leaving messages on the queue so other receivers can receive them.

• Extension points providing more direct control over the underlying protocol.

For instance, the x-bindings property allows greater control over the AMQP 0-10 binding process
when an address is resolved.

Let's use some examples to show how these different kinds of address string options affect the behavior
of senders and receives.

1.4.3.1. assert

In this section, we use the assert option to ensure that the address resolves to a node of the required type.

Example 1.8. Assertions on Nodes

Let's use qpid-config to create a queue and a topic.

 $ qpid-config add queue my-queue
 $ qpid-config add exchange topic my-topic

We can now use the address specified to drain to assert that it is of a particular type:

 $./drain 'my-queue; {assert: always, node:{ type: queue }}'
 $./drain 'my-queue; {assert: always, node:{ type: topic }}'
 2010-04-20 17:30:46 warning Exception received from broker: not-found: not-found: Exchange not found: my-queue (../../src/qpid/broker/ExchangeRegistry.cpp:92) [caused by 2 \x07:\x01]
 Exchange my-queue does not exist

The first attempt passed without error as my-queue is indeed a queue. The second attempt however failed;
my-queue is not a topic.

We can do the same thing for my-topic:

 $./drain 'my-topic; {assert: always, node:{ type: topic }}'
 $./drain 'my-topic; {assert: always, node:{ type: queue }}'
 2010-04-20 17:31:01 warning Exception received from broker: not-found: not-found: Queue not found: my-topic (../../src/qpid/broker/SessionAdapter.cpp:754) [caused by 1 \x08:\x01]
 Queue my-topic does not exist

Using the Qpid Messaging API

10

Now let's use the create option to create the queue xoxox if it does not already exist:

1.4.3.2. create

In previous examples, we created the queue before listening for messages on it. Using create: always,
the queue is automatically created if it does not exist.

Example 1.9. Creating a Queue Automatically

First Window:

$./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properties={spout-id:1a1a3842-1a8b-4f88-8940-b4096e615a7d:0}, content='')

The details of the node thus created can be controlled by further options within the node. See Table 1.2,
“Node Properties” for details.

1.4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages should
be consumed or read in browsing mode, or specify reliability characteristics. The following example uses
the browse option to receive messages without removing them from a queue.

Example 1.10. Browsing a Queue

Let's use the browse mode to receive messages without removing them from the queue. First we send three
messages to the queue:

 $./spout my-queue --content one
 $./spout my-queue --content two
 $./spout my-queue --content three

Now we use drain to get those messages, using the browse option:

 $./drain 'my-queue; {mode: browse}'
 Message(properties={spout-id:fbb93f30-0e82-4b6d-8c1d-be60eb132530:0}, content='one')
 Message(properties={spout-id:ab9e7c31-19b0-4455-8976-34abe83edc5f:0}, content='two')
 Message(properties={spout-id:ea75d64d-ea37-47f9-96a9-d38e01c97925:0}, content='three')

We can confirm the messages are still on the queue by repeating the drain:

 $./drain 'my-queue; {mode: browse}'

Using the Qpid Messaging API

11

 Message(properties={spout-id:fbb93f30-0e82-4b6d-8c1d-be60eb132530:0}, content='one')
 Message(properties={spout-id:ab9e7c31-19b0-4455-8976-34abe83edc5f:0}, content='two')
 Message(properties={spout-id:ea75d64d-ea37-47f9-96a9-d38e01c97925:0}, content='three')

1.4.3.4. x-bindings

Greater control over the AMQP 0-10 binding process can be achieved by including an x-bindings
option in an address string. For instance, the XML Exchange is an AMQP 0-10 custom exchange provided
by the Apache Qpid C++ broker. It allows messages to be filtered using XQuery; queries can address either
message properties or XML content in the body of the message. The xquery is specified in the arguments
field of the AMQP 0-10 command. When using the messaging API an xquery can be specified in and
address that resolves to an XML exchange by using the x-bindings property.

An instance of the XML Exchange must be added before it can be used:

 $ qpid-config add exchange xml xml

When using the XML Exchange, a receiver provides an XQuery as an x-binding argument. If the query
contains a context item (a path starting with “.”), then it is applied to the content of the message, which
must be well-formed XML. For instance, ./weather is a valid XQuery, which matches any message in
which the root element is named weather. Here is an address string that contains this query:

 xml; {
 link: {
 x-bindings: [{exchange:xml, key:weather, arguments:{xquery:"./weather"} }]
 }
 }

When using longer queries with drain, it is often useful to place the query in a file, and use cat in the
command line. We do this in the following example.

Example 1.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML messages.
Here is an XQuery that we will use in this example:

 let $w := ./weather
 return $w/station = 'Raleigh-Durham International Airport (KRDU)'
 and $w/temperature_f > 50
 and $w/temperature_f - $w/dewpoint > 5
 and $w/wind_speed_mph > 7
 and $w/wind_speed_mph < 20

We can specify this query in an x-binding to listen to messages that meet the criteria specified by the query:

First Window:

Using the Qpid Messaging API

12

 $./drain -f "xml; {link:{x-bindings:[{key:'weather',
 arguments:{xquery:\"$(cat rdu.xquery)\"}}]}}"

In another window, let's create an XML message that meets the criteria in the query, and place it in the
file rdu.xml:

 <weather>
 <station>Raleigh-Durham International Airport (KRDU)</station>
 <wind_speed_mph>16</wind_speed_mph>
 <temperature_f>70</temperature_f>
 <dewpoint>35</dewpoint>
 </weather>

Now let's use spout to send this message to the XML exchange:

Second Window:

 spout --content "$(cat rdu.xml)" xml/weather

Returning to the first window, we see that the message has been received:

$./drain -f "xml; {link:{x-bindings:[{exchange:'xml', key:'weather', arguments:{xquery:\"$(cat rdu.xquery)\"}}]}}"
 Message(properties={qpid.subject:weather, spout-id:31c431de-593f-4bec-a3dd-29717bd945d3:0},
 content='<weather>
 <station>Raleigh-Durham International Airport (KRDU)</station>
 <wind_speed_mph>16</wind_speed_mph>
 <temperature_f>40</temperature_f>
 <dewpoint>35</dewpoint>
 </weather>')

1.4.3.5. Address String Options - Reference

Table 1.1. Address String Options

option value semantics

assert one of: always, never, sender or
receiver

Asserts that the properties specified in
the node option match whatever the
address resolves to. If they do not,
resolution fails and an exception is
raised.

create one of: always, never, sender or
receiver

Creates the node to which an address
refers if it does not exist. No error
is raised if the node does exist. The
details of the node may be specified in
the node option.

delete one of: always, never, sender or
receiver

Delete the node when the sender or
receiver is closed.

Using the Qpid Messaging API

13

option value semantics

node A nested map containing the
entries shown in Table 1.2, “Node
Properties”.

Specifies properties of the node to
which the address refers. These are
used in conjunction with the assert or
create options.

link A nested map containing the entries
shown in Table 1.3, “Link Properties”.

Used to control the establishment of
a conceptual link from the client
application to or from the target/
source address.

mode one of: browse, consume This option is only of relevance for
source addresses that resolve to a
queue. If browse is specified the
messages delivered to the receiver are
left on the queue rather than being
removed. If consume is specified the
normal behaviour applies; messages
are removed from the queue once the
client acknowledges their receipt.

Table 1.2. Node Properties

property value semantics

type topic, queue Indicates the type of the node.

durable True, False Indicates whether the node survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields on
an AMQP 0-10 queue-declare or
exchange-declare command.

These values are used to fine tune
the creation or assertion process.
Note however that they are protocol
specific.

x-bindings A nested list in which each binding
is represented by a map. The entries
of the map for a binding contain the
fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

 [
 {
 exchange: <exchange>,
 queue: <queue>,
 key: <key>,
 arguments: {
 <key_1>: <value_1>,
 ...,
 <key_n>: <value_n> }
 },
 ...
]

In conjunction with the create option,
each of these bindings is established as
the address is resolved. In conjunction
with the assert option, the existence
of each of these bindings is verified
during resolution. Again, these are
protocol specific.

Using the Qpid Messaging API

14

Table 1.3. Link Properties

option value semantics

reliability one of: unreliable, at-least-once, at-
most-once, exactly-once

Reliability indicates the level of
reliability that the sender or receiver.
unreliable and at-most-once
are currently treated as synonyms,
and allow messages to be lost if a
broker crashes or the connection to
a broker is lost. at-least-once
guarantees that a message is not
lost, but duplicates may be received.
exactly-once guarantees that
a message is not lost, and is
delivered precisely once. Currently
only unreliable and at-least-
once are supported. a

durable True, False Indicates whether the link survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields of an
AMQP 0-10 queue-declare command.

These values can be used to customise
the subscription queue in the case
of receiving from an exchange.
Note however that they are protocol
specific.

x-subscribe A nested map whose values
correspond to the valid fields of
an AMQP 0-10 message-subscribe
command.

These values can be used to customise
the subscription.

x-bindings A nested list each of whose entries
is a map that may contain fields
(queue, exchange, key and arguments)
describing an AMQP 0-10 binding.

These bindings are established during
resolution independent of the create
option. They are considered logically
part of the linking process rather than
of node creation.

aIf at-most-once is requested, unreliable will be used and for durable messages on durable queues there is the possibility that messages will be
redelivered; if exactly-once is requested, at-least-once will be used and the application needs to be able to deal with duplicates.

1.4.4. Address String Grammar
This section provides a formal grammar for address strings.

Tokens. The following regular expressions define the tokens used to parse address strings:

 LBRACE: \\{
 RBRACE: \\}
 LBRACK: \\[
 RBRACK: \\]
 COLON: :
 SEMI: ;
 SLASH: /
 COMMA: ,

Using the Qpid Messaging API

15

 NUMBER: [+-]?[0-9]*\\.?[0-9]+
 ID: [a-zA-Z_](?:[a-zA-Z0-9_-]*[a-zA-Z0-9_])?
 STRING: "(?:[^\\\\"]|\\\\.)*"|\'(?:[^\\\\\']|\\\\.)*\'
 ESC: \\\\[^ux]|\\\\x[0-9a-fA-F][0-9a-fA-F]|\\\\u[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F]
 SYM: [.#*%@$^!+-]
 WSPACE: [\\n\\r\\t]+

Grammar. The formal grammar for addresses is given below:

 address := name [SLASH subject] [";" options]
 name := (part | quoted)+
 subject := (part | quoted | SLASH)*
 quoted := STRING / ESC
 part := LBRACE / RBRACE / COLON / COMMA / NUMBER / ID / SYM
 options := map
 map := "{" (keyval ("," keyval)*)? "}"
 keyval "= ID ":" value
 value := NUMBER / STRING / ID / map / list
 list := "[" (value ("," value)*)? "]"

Address String Options. The address string options map supports the following parameters:

 <name> [/ <subject>] ; {
 create: always | sender | receiver | never,
 delete: always | sender | receiver | never,
 assert: always | sender | receiver | never,
 mode: browse | consume,
 node: {
 type: queue | topic,
 durable: True | False,
 x-declare: { ... <declare-overrides> ... },
 x-bindings: [<binding_1>, ... <binding_n>]
 },
 link: {
 name: <link-name>,
 durable: True | False,
 reliability: unreliable | at-most-once | at-least-once | exactly-once,
 x-declare: { ... <declare-overrides> ... },
 x-bindings: [<binding_1>, ... <binding_n>],
 x-subscribe: { ... <subscribe-overrides> ... }
 }
 }

Create, Delete, and Assert Policies

The create, delete, and assert policies specify who should perfom the associated action:

• always: the action is performed by any messaging client

• sender: the action is only performed by a sender

Using the Qpid Messaging API

16

• receiver: the action is only performed by a receiver

• never: the action is never performed (this is the default)

Node-Type

The node-type is one of:

• topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be used
to specify other exchange types

• queue: this is the default node-type

1.5. Sender Capacity and Replay
The send method of a sender has an optional second parameter that controls whether the send call is
synchronous or not. A synchronous send call will block until the broker has confirmed receipt of the
message. An asynchronous send call will return before the broker confirms receipt of the message, allowing
for example further send calls to be made without waiting for a roundtrip to the broker for each message.
This is desirable where increased throughput is important.

The sender maintains a list of sent messages whose receipt has yet to be confirmed by the broker. The
maximum number of such messages that it will hold is defined by the capacity of the sender, which can
be set by the application. If an application tries to send with a sender whose capacity is already fully used
up, the send call will block waiting for capacity regardless of the value of the sync flag.

The sender can be queried for the available space (i.e. the unused capacity), and for the current count
of unsettled messages (i.e. those held in the replay list pending confirmation by the server). When the
unsettled count is zero, all messages on that sender have been successfully sent.

If the connection fails and is transparently reconnected (see Section 1.10.2, “Connection Options” for
details on how to control this feature), the unsettled messages for each sender over that connection will
be re-transmitted. This provides a transparent level of reliability. This feature can be controlled through
the link's reliability as defined in the address (see Table 1.3, “Link Properties”). At present only at-least-
once guarantees are offered.

1.6. Receiver Capacity (Prefetch)
By default, a receiver requests the next message from the server in response to each fetch call, resulting in
messages being sent to the receiver one at a time. As in the case of sending, it is often desirable to avoid
this roundtrip for each message. This can be achieved by allowing the receiver to prefetch messages in
anticipation of fetch calls being made. The receiver needs to be able to store these prefetched messages,
the number it can hold is controlled by the receivers capacity.

1.7. Acknowledging Received Messages
Applications that receive messages should acknowledge their receipt by calling the session's acknowledge
method. As in the case of sending messages, acknowledged transfer of messages to receivers provides at-
least-once reliability, which means that the loss of the connection or a client crash does not result in lost
messages; durable messages are not lost even if the broker is restarted. Some cases may not require this
however and the reliability can be controlled through a link property in the address options (see Table 1.3,
“Link Properties”).

The acknowledge call acknowledges all messages received on the session (i.e. all message that have been
returned from a fetch call on a receiver created on that session).

Using the Qpid Messaging API

17

The acknowledge call also support an optional parameter controlling whether the call is synchronous
or not. A synchronous acknowledge will block until the server has confirmed that it has received the
acknowledgement. In the asynchronous case, when the call returns there is not yet any guarantee that the
server has received and processed the acknowledgement. The session may be queried for the number of
unsettled acknowledgements; when that count is zero all acknowledgements made for received messages
have been successful.

1.8. Receiving Messages from Multiple Sources
A receiver can only read from one source, but many programs need to be able to read messages from
many sources. In the Qpid Messaging API, a program can ask a session for the “next receiver”; that is,
the receiver that is responsible for the next available message. The following examples show how this is
done in C++, Python, and .NET C#.

Note that to use this pattern you must enable prefetching for each receiver of interest so that the broker will
send messages before a fetch call is made. See Section 1.6, “Receiver Capacity (Prefetch)” for more on this.

Example 1.12. Receiving Messages from Multiple Sources

C++:

 Receiver receiver1 = session.createReceiver(address1);
 receiver1.setCapacity(10);
 Receiver receiver2 = session.createReceiver(address2);
 receiver2.setCapacity(10);

 Message message = session.nextReceiver().fetch();
 std::cout << message.getContent() << std::endl;
 session.acknowledge(); // acknowledge message receipt

Python:

 receiver1 = session.receiver(address1)
 receiver1.capacity = 10
 receiver2 = session.receiver(address)
 receiver2.capacity = 10
 message = session.next_receiver().fetch()
 print message.content
 session.acknowledge()

.NET C#:

 Receiver receiver1 = session.CreateReceiver(address1);
 receiver1.Capacity = 10;
 Receiver receiver2 = session.CreateReceiver(address2);
 receiver2.Capacity = 10;

 Message message = new Message();
 message = session.NextReceiver().Fetch();
 Console.WriteLine("{0}", message.GetContent());

Using the Qpid Messaging API

18

 session.Acknowledge();

1.9. Transactions
Sometimes it is useful to be able to group messages transfers - sent and/or received - on a session into
atomic grouping. This can be done be creating the session as transactional. On a transactional session sent
messages only become available at the target address on commit. Likewise any received and acknowledged
messages are only discarded at their source on commit 8 .

Example 1.13. Transactions

C++:

 Connection connection(broker);
 Session session = connection.createTransactionalSession();
 ...
 if (smellsOk())
 session.commit();
 else
 session.rollback();

.NET C#:

 Connection connection = new Connection(broker);
 Session session = connection.CreateTransactionalSession();
 ...
 if (smellsOk())
 session.Commit();
 else
 session.Rollback();

1.10. Connections
Messaging connections are created by specifying a broker or a list of brokers, and an optional set of
connection options. The constructor prototypes for Connections are:

 Connection connection();
 Connection connection(const string url);
 Connection connection(const string url, const string& options);
 Connection connection(const string url, const Variant::Map& options);

Messaging connection URLs specify only the network host address(es). Connection options are specified
separately as an options string or map. This is different from JMS Connection URLs that combine the
network address and connection properties in a single string.

8Note that this currently is only true for messages received using a reliable mode e.g. at-least-once. Messages sent by a broker to a receiver in
unreliable receiver will be discarded immediately regardless of transctionality.

Using the Qpid Messaging API

19

1.10.1. Connection URLs
Connection URLs describe the broker or set of brokers to which the connection is to attach. The format of
the Connection URL is defined by AMQP 0.10 Domain:connection.amqp-host-url.

 amqp_url = "amqp:" prot_addr_list
 prot_addr_list = [prot_addr ","]* prot_addr
 prot_addr = tcp_prot_addr | tls_prot_addr

 tcp_prot_addr = tcp_id tcp_addr
 tcp_id = "tcp:" | ""
 tcp_addr = [host [":" port]]
 host = <as per http://www.ietf.org/rfc/rfc3986.txt>
 port = number

Examples of Messaging Connection URLs

 localhost
 localhost:5672
 localhost:9999
 192.168.1.2:5672
 mybroker.example.com:5672
 amqp:tcp:localhost:5672
 tcp:locahost:5672,localhost:5800

1.10.2. Connection Options
Aspects of the connections behaviour can be controlled through specifying connection options. For
example, connections can be configured to automatically reconnect if the connection to a broker is lost.

Example 1.14. Specifying Connection Options in C++, Python, and .NET

In C++, these options can be set using Connection::setOption() or by passing in a set of options
to the constructor. The options can be passed in as a map or in string form:

or

 Connection connection("localhost:5672");
 connection.setOption("reconnect", true);
 try {
 connection.open();
 !!! SNIP !!!

In Python, these options can be set as attributes of the connection or using named arguments in the
Connection constructor:

 connection = Connection("localhost:5672", reconnect=True)
 try:
 connection.open()

Using the Qpid Messaging API

20

 !!! SNIP !!!

or

 connection = Connection("localhost:5672")
 connection.reconnect = True
 try:
 connection.open()
 !!! SNIP !!!

In .NET, these options can be set using Connection.SetOption() or by passing in a set of options
to the constructor. The options can be passed in as a map or in string form:

 Connection connection= new Connection("localhost:5672", "{reconnect: true}");
 try {
 connection.Open();
 !!! SNIP !!!

or

 Connection connection = new Connection("localhost:5672");
 connection.SetOption("reconnect", true);
 try {
 connection.Open();
 !!! SNIP !!!

See the reference documentation for details in each language.

The following table lists the supported connection options.

Table 1.4. Connection Options

option name value type semantics

username string The username to use when
authenticating to the broker.

password string The password to use when
authenticating to the broker.

sasl_mechanisms string The specific SASL mechanisms to
use with the python client when
authenticating to the broker. The value
is a space separated list.

reconnect boolean Transparently reconnect if the
connection is lost.

reconnect_timeout integer Total number of seconds to continue
reconnection attempts before giving
up and raising an exception.

Using the Qpid Messaging API

21

option name value type semantics

reconnect_limit integer Maximum number of reconnection
attempts before giving up and raising
an exception.

reconnect_interval_min integer representing time in seconds Minimum number of seconds
between reconnection attempts. The
first reconnection attempt is made
immediately; if that fails, the first
reconnection delay is set to the value
of reconnect_interval_min;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds
or reconnect_interval_max is
reached.

reconnect_interval_max integer representing time in seconds Maximum reconnect interval.

reconnect_interval integer representing time in seconds Sets both
reconnection_interval_min
and
reconnection_interval_max
to the same value.

heartbeat integer representing time in seconds Requests that heartbeats be sent
every N seconds. If two successive
heartbeats are missed the connection
is considered to be lost.

transport string Sets the underlying transport protocol
used. The default option is 'tcp'. To
enable ssl, set to 'ssl'. The C++ client
additionally supports 'rdma'.

tcp-nodelay boolean Set tcp no-delay, i.e. disable Nagle
algorithm. [C++ only]

protocol string Sets the application protocol used.
The default option is 'amqp0-10'. To
enable AMQP 1.0, set to 'amqp1.0'.

1.11. Maps and Lists in Message Content
Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language.

The Qpid Messaging API supports map and list in message content. 9 10 Specific language support for
map and list objects are shown in the following table.

Table 1.5. Map and List Representation in Supported Languages

Language map list

Python dict list

9Unlike JMS, there is not a specific message type for map messages.
10 Note that the Qpid JMS client supports MapMessages whose values can be nested maps or lists. This is not standard JMS behaviour.

Using the Qpid Messaging API

22

Language map list

C++ Variant::Map Variant::List

Java MapMessage

.NET Dictionary<string,
object>

Collection<object>

In all languages, messages are encoded using AMQP's portable datatypes.

Tip

Because of the differences in type systems among languages, the simplest way to provide portable
messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for messages that
need to be exchanged across languages and platforms.

1.11.1. Qpid Maps and Lists in Python
In Python, Qpid supports the dict and list types directly in message content. The following code shows
how to send these structures in a message:

Example 1.15. Sending Qpid Maps and Lists in Python

 from qpid.messaging import *
 # !!! SNIP !!!

 content = {'Id' : 987654321, 'name' : 'Widget', 'percent' : 0.99}
 content['colours'] = ['red', 'green', 'white']
 content['dimensions'] = {'length' : 10.2, 'width' : 5.1,'depth' : 2.0};
 content['parts'] = [[1,2,5], [8,2,5]]
 content['specs'] = {'colors' : content['colours'],
 'dimensions' : content['dimensions'],
 'parts' : content['parts'] }
 message = Message(content=content)
 sender.send(message)

The following table shows the datatypes that can be sent in a Python map message, and the corresponding
datatypes that will be received by clients in Java or C++.

Table 1.6. Python Datatypes in Maps

Python Datatype → C++ → Java

bool bool boolean

int int64 long

long int64 long

float double double

unicode string java.lang.String

uuid qpid::types::Uuid java.util.UUID

dict Variant::Map java.util.Map

list Variant::List java.util.List

Using the Qpid Messaging API

23

1.11.2. Qpid Maps and Lists in C++

In C++, Qpid defines the the Variant::Map and Variant::List types, which can be encoded into
message content. The following code shows how to send these structures in a message:

Example 1.16. Sending Qpid Maps and Lists in C++

 using namespace qpid::types;

 // !!! SNIP !!!

 Message message;
 Variant::Map content;
 content["id"] = 987654321;
 content["name"] = "Widget";
 content["percent"] = 0.99;
 Variant::List colours;
 colours.push_back(Variant("red"));
 colours.push_back(Variant("green"));
 colours.push_back(Variant("white"));
 content["colours"] = colours;

 Variant::Map dimensions;
 dimensions["length"] = 10.2;
 dimensions["width"] = 5.1;
 dimensions["depth"] = 2.0;
 content["dimensions"]= dimensions;

 Variant::List part1;
 part1.push_back(Variant(1));
 part1.push_back(Variant(2));
 part1.push_back(Variant(5));

 Variant::List part2;
 part2.push_back(Variant(8));
 part2.push_back(Variant(2));
 part2.push_back(Variant(5));

 Variant::List parts;
 parts.push_back(part1);
 parts.push_back(part2);
 content["parts"]= parts;

 Variant::Map specs;
 specs["colours"] = colours;
 specs["dimensions"] = dimensions;
 specs["parts"] = parts;
 content["specs"] = specs;

 encode(content, message);
 sender.send(message, true);

Using the Qpid Messaging API

24

The following table shows the datatypes that can be sent in a C++ map message, and the corresponding
datatypes that will be received by clients in Java and Python.

Table 1.7. C++ Datatypes in Maps

C++ Datatype → Python → Java

bool bool boolean

uint16 int | long short

uint32 int | long int

uint64 int | long long

int16 int | long short

int32 int | long int

int64 int | long long

float float float

double float double

string unicode java.lang.String

qpid::types::Uuid uuid java.util.UUID

Variant::Map dict java.util.Map

Variant::List list java.util.List

1.11.3. Qpid Maps and Lists in .NET
The .NET binding for the Qpid Messaging API binds .NET managed data types to C++ Variant data
types. The following code shows how to send Map and List structures in a message:

Example 1.17. Sending Qpid Maps and Lists in .NET C#

 using System;
 using Org.Apache.Qpid.Messaging;

 // !!! SNIP !!!

 Dictionary<string, object> content = new Dictionary<string, object>();
 Dictionary<string, object> subMap = new Dictionary<string, object>();
 Collection<object> colors = new Collection<object>();

 // add simple types
 content["id"] = 987654321;
 content["name"] = "Widget";
 content["percent"] = 0.99;

 // add nested amqp/map
 subMap["name"] = "Smith";
 subMap["number"] = 354;
 content["nestedMap"] = subMap;

 // add an amqp/list
 colors.Add("red");

Using the Qpid Messaging API

25

 colors.Add("green");
 colors.Add("white");
 content["colorsList"] = colors;

 // add one of each supported amqp data type
 bool mybool = true;
 content["mybool"] = mybool;

 byte mybyte = 4;
 content["mybyte"] = mybyte;

 UInt16 myUInt16 = 5;
 content["myUInt16"] = myUInt16;

 UInt32 myUInt32 = 6;
 content["myUInt32"] = myUInt32;

 UInt64 myUInt64 = 7;
 content["myUInt64"] = myUInt64;

 char mychar = 'h';
 content["mychar"] = mychar;

 Int16 myInt16 = 9;
 content["myInt16"] = myInt16;

 Int32 myInt32 = 10;
 content["myInt32"] = myInt32;

 Int64 myInt64 = 11;
 content["myInt64"] = myInt64;

 Single mySingle = (Single)12.12;
 content["mySingle"] = mySingle;

 Double myDouble = 13.13;
 content["myDouble"] = myDouble;

 Guid myGuid = new Guid("000102030405060708090a0b0c0d0e0f");
 content["myGuid"] = myGuid;

 Message message = new Message(content);
 Send(message, true);

The following table shows the mapping between datatypes in .NET and C++.

Table 1.8. Datatype Mapping between C++ and .NET binding

C++ Datatype → .NET binding

void nullptr

bool bool

uint8 byte

Using the Qpid Messaging API

26

C++ Datatype → .NET binding

uint16 UInt16

uint32 UInt32

uint64 UInt64

uint8 char

int16 Int16

int32 Int32

int64 Int64

float Single

double Double

string string a

qpid::types::Uuid Guid

Variant::Map Dictionary<string, object> a

Variant::List Collection<object> a

aStrings are currently interpreted only with UTF-8 encoding.

1.12. The Request / Response Pattern
Request / Response applications use the reply-to property, described in Table 1.9, “Mapping to AMQP
0-10 Message Properties”, to allow a server to respond to the client that sent a message. A server sets up
a service queue, with a name known to clients. A client creates a private queue for the server's response,
creates a message for a request, sets the request's reply-to property to the address of the client's response
queue, and sends the request to the service queue. The server sends the response to the address specified
in the request's reply-to property.

Example 1.18. Request / Response Applications in C++

This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for a message to arrive. If it receives a message, it sends a
message back to the sender.

Receiver receiver = session.createReceiver("service_queue; {create: always}");

 Message request = receiver.fetch();
 const Address& address = request.getReplyTo(); // Get "reply-to" from request ...
 if (address) {
 Sender sender = session.createSender(address); // ... send response to "reply-to"
 Message response("pong!");
 sender.send(response);
 session.acknowledge();
 }

The client creates a sender for the service queue, and also creates a response queue that is deleted when the
client closes the receiver for the response queue. In the C++ client, if the address starts with the character
#, it is given a unique name.

Using the Qpid Messaging API

27

 Sender sender = session.createSender("service_queue");

 Address responseQueue("#response-queue; {create:always, delete:always}");
 Receiver receiver = session.createReceiver(responseQueue);

 Message request;
 request.setReplyTo(responseQueue);
 request.setContent("ping");
 sender.send(request);
 Message response = receiver.fetch();
 std::cout << request.getContent() << " -> " << response.getContent() << std::endl;

The client sends the string ping to the server. The server sends the response pong back to the same
client, using the replyTo property.

1.13. Performance Tips
• Consider prefetching messages for receivers (see Section 1.6, “Receiver Capacity (Prefetch)”). This

helps eliminate roundtrips and increases throughput. Prefetch is disabled by default, and enabling it is
the most effective means of improving throughput of received messages.

• Send messages asynchronously. Again, this helps eliminate roundtrips and increases throughput. The C
++ and .NET clients send asynchronously by default, however the python client defaults to synchronous
sends.

• Acknowledge messages in batches (see Section 1.7, “Acknowledging Received Messages”). Rather than
acknowledging each message individually, consider issuing acknowledgements after n messages and/
or after a particular duration has elapsed.

• Tune the sender capacity (see Section 1.5, “Sender Capacity and Replay”). If the capacity is too low
the sender may block waiting for the broker to confirm receipt of messages, before it can free up more
capacity.

• If you are setting a reply-to address on messages being sent by the c++ client, make sure the address
type is set to either queue or topic as appropriate. This avoids the client having to determine which type
of node is being refered to, which is required when hanling reply-to in AMQP 0-10.

• For latency sensitive applications, setting tcp-nodelay on qpidd and on client connections can help
reduce the latency.

1.14. Cluster Failover
The messaging broker can be run in clustering mode, which provides high reliability through replicating
state between brokers in the cluster. If one broker in a cluster fails, clients can choose another broker in
the cluster and continue their work. Each broker in the cluster also advertises the addresses of all known
brokers 11 . A client can use this information to dynamically keep the list of reconnection urls up to date.

In C++, the FailoverUpdates class provides this functionality:

Example 1.19. Tracking cluster membership

In C++:

11This is done via the amq.failover exchange in AMQP 0-10

Using the Qpid Messaging API

28

 #include <qpid/messaging/FailoverUpdates.h>
 ...
 Connection connection("localhost:5672");
 connection.setOption("reconnect", true);
 try {
 connection.open();
 std::auto_ptr<FailoverUpdates> updates(new FailoverUpdates(connection));

In python:

 import qpid.messaging.util
 ...
 connection = Connection("localhost:5672")
 connection.reconnect = True
 try:
 connection.open()
 auto_fetch_reconnect_urls(connection)

In .NET C#:

 using Org.Apache.Qpid.Messaging;
 ...
 connection = new Connection("localhost:5672");
 connection.SetOption("reconnect", true);
 try {
 connection.Open();
 FailoverUpdates failover = new FailoverUpdates(connection);

1.15. Logging
To simplify debugging, Qpid provides a logging facility that prints out messaging events.

1.15.1. Logging in C++
The Qpidd broker and C++ clients can both use environment variables to enable logging. Linux and
Windows systems use the same named environment variables and values.

Use QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug, info, notice,
warning, error, or critical):

 export QPID_LOG_ENABLE="warning+"

The Qpidd broker and C++ clients use QPID_LOG_OUTPUT to determine where logging output should
be sent. This is either a file name or the special values stderr, stdout, or syslog:

Using the Qpid Messaging API

29

 export QPID_LOG_TO_FILE="/tmp/myclient.out"

From a Windows command prompt, use the following command format to set the environment variables:

 set QPID_LOG_ENABLE=warning+
 set QPID_LOG_TO_FILE=D:\tmp\myclient.out

1.15.2. Logging in Python
The Python client library supports logging using the standard Python logging module. The easiest way to
do logging is to use the basicConfig(), which reports all warnings and errors:

from logging import basicConfig
 basicConfig()

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired. For
instance, the following code enables logging at the DEBUG level:

from qpid.log import enable, DEBUG
 enable("qpid.messaging.io", DEBUG)

For more information on Python logging, see http://docs.python.org/lib/node425.html. For more
information on Qpid logging, use $ pydoc qpid.log.

1.16. The AMQP 0-10 mapping
This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker to
determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to the
default (or nameless) exchange. When sending to an exchange, the message is transfered to that exchange
and the routing key is set to the message subject if one is specified. A default subject may be specified
in the target address. The subject may also be set on each message individually to override the default if
required. In each case any specified subject is also added as a qpid.subject entry in the application-headers
field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends
a message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-mode is none, for reliable links it is explicit.
The default for a queue is reliable. The acquire-mode is determined by the value of the mode option. If the
mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired. The exclusive
and arguments fields in the message-subscribe command can be controlled using the x-subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the exchange.
The subscription queue's arguments can be specified using the x-declare map within the link properties.
The reliability option determines most of the other parameters. If the reliability is set to unreliable then

http://docs.python.org/lib/node425.html

Using the Qpid Messaging API

30

an auto-deleted, exclusive queue is used meaning that if the client or connection fails messages may be
lost. For exactly-once the queue is not set to be auto-deleted. The durability of the subscription queue is
determined by the durable option in the link properties. The binding process depends on the type of the
exchange the source address resolves to.

• For a topic exchange, if no subject is specified and no x-bindings are defined for the link, the subscription
queue is bound using a wildcard matching any routing key (thus satisfying the expectation that any
message sent to that address will be received from it). If a subject is specified in the source address
however, it is used for the binding key (this means that the subject in the source address may be a binding
pattern including wildcards).

• For a fanout exchange the binding key is irrelevant to matching. A receiver created from a source address
that resolves to a fanout exchange receives all messages sent to that exchange regardless of any subject
the source address may contain. An x-bindings element in the link properties should be used if there is
any need to set the arguments to the bind.

• For a direct exchange, the subject is used as the binding key. If no subject is specified an empty string
is used as the binding key.

• For a headers exchange, if no subject is specified the binding arguments simply contain an x-match entry
and no other entries, causing all messages to match. If a subject is specified then the binding arguments
contain an x-match entry set to all and an entry for qpid.subject whose value is the subject in the source
address (this means the subject in the source address must match the message subject exactly). For more
control the x-bindings element in the link properties must be used.

• For the XML exchange,12 if a subject is specified it is used as the binding key and an XQuery is defined
that matches any message with that value for qpid.subject. Again this means that only messages whose
subject exactly match that specified in the source address are received. If no subject is specified then
the empty string is used as the binding key with an xquery that will match any message (this means that
only messages with an empty string as the routing key will be received). For more control the x-bindings
element in the link properties must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link properties as there is no way at present to
receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within that list.
Each element is a nested map that may contain values named queue, exchange, key or arguments. If the
queue value is absent the queue name the address resolves to is implied. If the exchange value is absent
the exchange name the address resolves to is implied.

The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in the
Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to an
AMQP 0-10 delivery-properties struct.

Table 1.9. Mapping to AMQP 0-10 Message Properties

Python API C++ API a AMQP 0-10 Propertyb

msg.id msg.{get,set}MessageId() mp.message_id

msg.subject msg.{get,set}Subject() mp.application_headers["qpid.subject"]

msg.user_id msg.{get,set}UserId() mp.user_id

msg.reply_to msg.{get,set}ReplyTo() mp.reply_toc

msg.correlation_id msg.{get,set}CorrelationId() mp.correlation_id

12Note that the XML exchange is not a standard AMQP exchange type. It is a Qpid extension and is currently only supported by the C++ broker.

Using the Qpid Messaging API

31

Python API C++ API a AMQP 0-10 Propertyb

msg.durable msg.{get,set}Durable() dp.delivery_mode ==
delivery_mode.persistentd

msg.priority msg.{get,set}Priority() dp.priority

msg.ttl msg.{get,set}Ttl() dp.ttl

msg.redelivered msg.{get,set}Redelivered() dp.redelivered

msg.properties msg.getProperties()/
msg.setProperty()

mp.application_headers

msg.content_type msg.{get,set}ContentType() mp.content_type
a The .NET Binding for C++ Messaging provides all the message and delivery properties described in the C++ API. See Table 2.13, “.NET Binding
for the C++ Messaging API Class: Message” .
bIn these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.
cThe reply_to is converted from the protocol representation into an address.
dNote that msg.durable is a boolean, not an enum.

1.16.1. 0-10 Message Property Keys
The QPID Messaging API also recognises special message property keys and automatically provides a
mapping to their corresponding AMQP 0-10 definitions.

• When sending a message, if the properties contain an entry for x-amqp-0-10.app-id, its value will
be used to set the message-properties.app-id property in the outgoing message. Likewise, if
an incoming message has message-properties.app-id set, its value can be accessed via the
x-amqp-0-10.app-id message property key.

• When sending a message, if the properties contain an entry for x-amqp-0-10.content-
encoding, its value will be used to set the message-properties.content-
encoding property in the outgoing message. Likewise, if an incoming message has
message-properties.content-encoding set, its value can be accessed via the x-
amqp-0-10.content-encoding message property key.

• The routing key (delivery-properties.routing-key) in an incoming messages can be
accessed via the x-amqp-0-10.routing-key message property.

• If the timestamp delivery property is set in an incoming message (delivery-
properties.timestamp), the timestamp value will be made available via the x-
amqp-0-10.timestamp message property. 13

Example 1.20. Accessing the AMQP 0-10 Message Timestamp in Python

The following code fragment checks for and extracts the message timestamp from a received message.

 try:
 msg = receiver.fetch(timeout=1)
 if "x-amqp-0-10.timestamp" in msg.properties:
 print("Timestamp=%s" % str(msg.properties["x-amqp-0-10.timestamp"]))
 except Empty:
 pass

13 This special property is currently not supported by the Qpid JMS client.

Using the Qpid Messaging API

32

Example 1.21. Accessing the AMQP 0-10 Message Timestamp in C++

The same example, except in C++.

 messaging::Message msg;
 if (receiver.fetch(msg, messaging::Duration::SECOND*1)) {
 if (msg.getProperties().find("x-amqp-0-10.timestamp") != msg.getProperties().end()) {
 std::cout << "Timestamp=" << msg.getProperties()["x-amqp-0-10.timestamp"].asString() << std::endl;
 }
 }

1.17. Using Message Groups
This section describes how messaging applications can use the Message Group feature provided by the
Broker.

Note
The content of this section assumes the reader is familiar with the Message Group feature as
described in the AMQP Messaging Broker user's guide. Please read the message grouping section
in the Broker user's guide before using the examples given in this section.

1.17.1. Creating Message Group Queues
The following examples show how to create a message group queue that enforces ordered group
consumption across multiple consumers.

Example 1.22. Message Group Queue Creation - Python

sender = connection.session().sender("msg-group-q;" +
 " {create:always, delete:receiver," +
 " node: {x-declare: {arguments:" +
 " {'qpid.group_header_key':'THE-GROUP'," +
 " 'qpid.shared_msg_group':1}}}}")

Example 1.23. Message Group Queue Creation - C++

std::string addr("msg-group-q; "
 " {create:always, delete:receiver,"
 " node: {x-declare: {arguments:"
 " {qpid.group_header_key:'THE-GROUP',"
 " qpid.shared_msg_group:1}}}}");
Sender sender = session.createSender(addr);

Example 1.24. Message Group Queue Creation - Java

Session s = c.createSession(false, Session.CLIENT_ACKNOWLEDGE);

Using the Qpid Messaging API

33

String addr = "msg-group-q; {create:always, delete:receiver," +
 " node: {x-declare: {arguments:" +
 " {'qpid.group_header_key':'THE-GROUP'," +
 " 'qpid.shared_msg_group':1}}}}";
Destination d = (Destination) new AMQAnyDestination(addr);
MessageProducer sender = s.createProducer(d);

The example code uses the x-declare map to specify the message group configuration that should be used
for the queue. See the AMQP Messaging Broker user's guide for a detailed description of these arguments.
Note that the qpid.group_header_key's value MUST be a string type if using the C++ broker.

1.17.2. Sending Grouped Messages
When sending grouped messages, the client must add a message property containing the group identifier to
the outgoing message. If using the C++ broker, the group identifier must be a string type. The key used for
the property must exactly match the value passed in the 'qpid.group_header_key' configuration argument.

Example 1.25. Sending Grouped Messages - Python

group = "A"
m = Message(content="some data", properties={"THE-GROUP": group})
sender.send(m)

group = "B"
m = Message(content="some other group's data", properties={"THE-GROUP": group})
sender.send(m)

group = "A"
m = Message(content="more data for group 'A'", properties={"THE-GROUP": group})
sender.send(m)

Example 1.26. Sending Grouped Messages - C++

const std::string groupKey("THE-GROUP");
{
 Message msg("some data");
 msg.getProperties()[groupKey] = std::string("A");
 sender.send(msg);
}
{
 Message msg("some other group's data");
 msg.getProperties()[groupKey] = std::string("B");
 sender.send(msg);
}
{
 Message msg("more data for group 'A'");
 msg.getProperties()[groupKey] = std::string("A");
 sender.send(msg);
}

Using the Qpid Messaging API

34

Example 1.27. Sending Grouped Messages - Java

String groupKey = "THE-GROUP";

TextMessage tmsg1 = s.createTextMessage("some data");
tmsg1.setStringProperty(groupKey, "A");
sender.send(tmsg1);

TextMessage tmsg2 = s.createTextMessage("some other group's data");
tmsg2.setStringProperty(groupKey, "B");
sender.send(tmsg2);

TextMessage tmsg3 = s.createTextMessage("more data for group 'A'");
tmsg3.setStringProperty(groupKey, "A");
sender.send(tmsg3);

The examples above send two groups worth of messages to the queue created in the previous example.
Two messages belong to group "A", and one belongs to group "B". Note that it is not necessary to
complete sending one group's messages before starting another. Also note that there is no need to indicate
to the broker when a new group is created or an existing group retired - the broker tracks group state
automatically.

1.17.3. Receiving Grouped Messages
Since the broker enforces group policy when delivering messages, no special actions are necessary for
receiving grouped messages from the broker. However, applications must adhere to the rules for message
group consumption as described in the AMQP Messaging Broker user's guide.

35

Chapter 2. The .NET Binding for the C+
+ Messaging Client

The .NET Binding for the C++ Qpid Messaging Client is a library that gives any .NET program access
to Qpid C++ Messaging objects and methods.

2.1. .NET Binding for the C++ Messaging Client
Component Architecture

 +----------------------------+
 | Dotnet examples |
 | Managed C# |
 +------+---------------+-----+
 | |
 V |
 +---------------------------+ |
 | .NET Managed Callback | |
 | org.apache.qpid.messaging.| |
 | sessionreceiver.dll | |
 +----------------------+----+ |
 | |
managed V V
(.NET) +--------------------------------+
:::::::::::::::::::::::| .NET Binding Library |::::::::::::
unmanaged | org.apache.qpid.messaging.dll |
(Native Win32/64) +---------------+----------------+
 |
 |
 +----------------+ |
 | Native examples| |
 | Unmanaged C++ | |
 +--------+-------+ |
 | |
 V V
 +----------------------------------+
 | QPID Messaging C++ Libraries |
 | qpid*.dll qmf*.dll |
 +--------+--------------+----------+

This diagram illustrates the code and library components of the binding and the hierarchical relationships
between them.

Table 2.1. .NET Binding for the C++ Messaging Client Component Architecture

Component Name Component Function

QPID Messaging C++ Libraries The QPID Messaging C++ core run time system

The .NET Binding for the
C++ Messaging Client

36

Component Name Component Function

Unmanaged C++ Example Source Programs Ordinary C++ programs that illustrate using qpid/
cpp Messaging directly in a native Windows
environment.

.NET Messaging Binding Library The .NET Messaging Binding library provides
interoprability between managed .NET programs
and the unmanaged, native Qpid Messaging C+
+ core run time system. .NET programs create a
Reference to this library thereby exposing all of
the native C++ Messaging functionality to programs
written in any .NET language.

.NET Messaging Managed Callback Library An extension of the .NET Messaging Binding
Library that provides message callbacks in a
managed .NET environment.

Managed C# .NET Example Source Programs Various C# example programs that illustrate
using .NET Binding for C++ Messaging in the .NET
environment.

2.2. .NET Binding for the C++ Messaging Client
Examples

This chapter describes the various sample programs that are available to illustrate common Qpid Messaging
usage.

Table 2.2. Example : Client - Server

Example Name Example Description

csharp.example.server Creates a Receiver and listens for messages. Upon
message reception the message content is converted
to upper case and forwarded to the received
message's ReplyTo address.

csharp.example.client Sends a series of messages to the Server and
prints the original message content and the received
message content.

Table 2.3. Example : Map Sender – Map Receiver

Example Name Example Description

csharp.map.receiver Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console.

csharp.map.sender Creates a map message and sends it to map.receiver.
The map message contains values for every
supported .NET Messaging Binding data type.

The .NET Binding for the
C++ Messaging Client

37

Table 2.4. Example : Spout - Drain

Example Name Example Description

csharp.example.spout Spout is a more complex example of code that
generates a series of messages and sends them
to peer program Drain. Flexible command line
arguments allow the user to specify a variety of
message and program options.

csharp.example.drain Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

Table 2.5. Example : Map Callback Sender – Map Callback Receiver

Example Name Example Description

csharp.map.callback.receiver Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console. This example
illustrates the use of the C# managed code callback
mechanism provided by .NET Messaging Binding
Managed Callback Library.

csharp.map.callback.sender Creates a map message and sends it to
map_receiver. The map message contains values
for every supported .NET Messaging Binding data
type.

Table 2.6. Example - Declare Queues

Example Name Example Description

csharp.example.declare_queues A program to illustrate creating objects on a broker.
This program creates a queue used by spout and
drain.

Table 2.7. Example: Direct Sender - Direct Receiver

Example Name Example Description

csharp.direct.receiver Creates a Receiver and listens for a messages.
Upon message reception the message is decoded
and displayed on the console.

csharp.direct.sender Creates a series of messages and sends them to
csharp.direct.receiver.

Table 2.8. Example: Hello World

Example Name Example Description

csharp.example.helloworld A program to send a message and to receive the
same message.

The .NET Binding for the
C++ Messaging Client

38

2.3. .NET Binding Class Mapping to Underlying
C++ Messaging API

This chapter describes the specific mappings between classes in the .NET Binding and the underlying C
++ Messaging API.

2.3.1. .NET Binding for the C++ Messaging API Class:
Address

Table 2.9. .NET Binding for the C++ Messaging API Class: Address

.NET Binding Class: Address

Language Syntax

C++ class Address

.NET public ref class Address

Constructor

C++ Address();

.NET public Address();

Constructor

C++ Address(const std::string& address);

.NET public Address(string address);

Constructor

C++ Address(const std::string& name, const std::string& subject, const
qpid::types::Variant::Map& options, const std::string& type = "");

.NET public Address(string name, string subject, Dictionary<string, object> options);

.NET public Address(string name, string subject, Dictionary<string, object> options, string type);

Copy constructor

C++ Address(const Address& address);

.NET public Address(Address address);

Destructor

C++ ~Address();

.NET ~Address();

Finalizer

C++ n/a

.NET !Address();

Copy assignment operator

C++ Address& operator=(const Address&);

.NET public Address op_Assign(Address rhs);

Property: Name

C++ const std::string& getName() const;

The .NET Binding for the
C++ Messaging Client

39

.NET Binding Class: Address

Language Syntax

C++ void setName(const std::string&);

.NET public string Name { get; set; }

Property: Subject

C++ const std::string& getSubject() const;

C++ void setSubject(const std::string&);

.NET public string Subject { get; set; }

Property: Options

C++ const qpid::types::Variant::Map& getOptions() const;

C++ qpid::types::Variant::Map& getOptions();

C++ void setOptions(const qpid::types::Variant::Map&);

.NET public Dictionary<string, object> Options { get; set; }

Property: Type

C++ std::string getType() const;

C++ void setType(const std::string&);

.NET public string Type { get; set; }

Miscellaneous

C++ std::string str() const;

.NET public string ToStr();

Miscellaneous

C++ operator bool() const;

.NET n/a

Miscellaneous

C++ bool operator !() const;

.NET n/a

2.3.2. .NET Binding for the C++ Messaging API Class:
Connection

Table 2.10. .NET Binding for the C++ Messaging API Class: Connection

.NET Binding Class: Connection

Language Syntax

C++ class Connection : public qpid::messaging::Handle<ConnectionImpl>

.NET public ref class Connection

Constructor

C++ Connection(ConnectionImpl* impl);

.NET n/a

Constructor

The .NET Binding for the
C++ Messaging Client

40

.NET Binding Class: Connection

Language Syntax

C++ Connection();

.NET n/a

Constructor

C++ Connection(const std::string& url, const qpid::types::Variant::Map& options =
qpid::types::Variant::Map());

.NET public Connection(string url);

.NET public Connection(string url, Dictionary<string, object> options);

Constructor

C++ Connection(const std::string& url, const std::string& options);

.NET public Connection(string url, string options);

Copy Constructor

C++ Connection(const Connection&);

.NET public Connection(Connection connection);

Destructor

C++ ~Connection();

.NET ~Connection();

Finalizer

C++ n/a

.NET !Connection();

Copy assignment operator

C++ Connection& operator=(const Connection&);

.NET public Connection op_Assign(Connection rhs);

Method: SetOption

C++ void setOption(const std::string& name, const qpid::types::Variant& value);

.NET public void SetOption(string name, object value);

Method: open

C++ void open();

.NET public void Open();

Property: isOpen

C++ bool isOpen();

.NET public bool IsOpen { get; }

Method: close

C++ void close();

.NET public void Close();

Method: createTransactionalSession

C++ Session createTransactionalSession(const std::string& name = std::string());

.NET public Session CreateTransactionalSession();

The .NET Binding for the
C++ Messaging Client

41

.NET Binding Class: Connection

Language Syntax

.NET public Session CreateTransactionalSession(string name);

Method: createSession

C++ Session createSession(const std::string& name = std::string());

.NET public Session CreateSession();

.NET public Session CreateSession(string name);

Method: getSession

C++ Session getSession(const std::string& name) const;

.NET public Session GetSession(string name);

Property: AuthenticatedUsername

C++ std::string getAuthenticatedUsername();

.NET public string GetAuthenticatedUsername();

2.3.3. .NET Binding for the C++ Messaging API Class:
Duration

Table 2.11. .NET Binding for the C++ Messaging API Class: Duration

.NET Binding Class: Duration

Language Syntax

C++ class Duration

.NET public ref class Duration

Constructor

C++ explicit Duration(uint64_t milliseconds);

.NET public Duration(ulong mS);

Copy constructor

C++ n/a

.NET public Duration(Duration rhs);

Destructor

C++ default

.NET default

Finalizer

C++ n/a

.NET default

Property: Milliseconds

C++ uint64_t getMilliseconds() const;

.NET public ulong Milliseconds { get; }

Operator: *

C++ Duration operator*(const Duration& duration, uint64_t multiplier);

The .NET Binding for the
C++ Messaging Client

42

.NET Binding Class: Duration

Language Syntax

.NET public static Duration operator *(Duration dur, ulong multiplier);

.NET public static Duration Multiply(Duration dur, ulong multiplier);

C++ Duration operator*(uint64_t multiplier, const Duration& duration);

.NET public static Duration operator *(ulong multiplier, Duration dur);

.NET public static Duration Multiply(ulong multiplier, Duration dur);

Constants

C++ static const Duration FOREVER;

C++ static const Duration IMMEDIATE;

C++ static const Duration SECOND;

C++ static const Duration MINUTE;

.NET public sealed class DurationConstants

.NET public static Duration FORVER;

.NET public static Duration IMMEDIATE;

.NET public static Duration MINUTE;

.NET public static Duration SECOND;

2.3.4. .NET Binding for the C++ Messaging API Class:
FailoverUpdates

Table 2.12. .NET Binding for the C++ Messaging API Class: FailoverUpdates

.NET Binding Class: FailoverUpdates

Language Syntax

C++ class FailoverUpdates

.NET public ref class FailoverUpdates

Constructor

C++ FailoverUpdates(Connection& connection);

.NET public FailoverUpdates(Connection connection);

Destructor

C++ ~FailoverUpdates();

.NET ~FailoverUpdates();

Finalizer

C++ n/a

.NET !FailoverUpdates();

The .NET Binding for the
C++ Messaging Client

43

2.3.5. .NET Binding for the C++ Messaging API Class:
Message

Table 2.13. .NET Binding for the C++ Messaging API Class: Message

.NET Binding Class: Message

Language Syntax

C++ class Message

.NET public ref class Message

Constructor

C++ Message(const std::string& bytes = std::string());

.NET Message();

.NET Message(System::String ^ theStr);

.NET Message(System::Object ^ theValue);

.NET Message(array<System::Byte> ^ bytes);

Constructor

C++ Message(const char*, size_t);

.NET public Message(byte[] bytes, int offset, int size);

Copy constructor

C++ Message(const Message&);

.NET public Message(Message message);

Copy assignment operator

C++ Message& operator=(const Message&);

.NET public Message op_Assign(Message rhs);

Destructor

C++ ~Message();

.NET ~Message();

Finalizer

C++ n/a

.NET !Message()

Property: ReplyTo

C++ void setReplyTo(const Address&);

C++ const Address& getReplyTo() const;

.NET public Address ReplyTo { get; set; }

Property: Subject

C++ void setSubject(const std::string&);

C++ const std::string& getSubject() const;

.NET public string Subject { get; set; }

Property: ContentType

C++ void setContentType(const std::string&);

The .NET Binding for the
C++ Messaging Client

44

.NET Binding Class: Message

Language Syntax

C++ const std::string& getContentType() const;

.NET public string ContentType { get; set; }

Property: MessageId

C++ void setMessageId(const std::string&);

C++ const std::string& getMessageId() const;

.NET public string MessageId { get; set; }

Property: UserId

C++ void setUserId(const std::string&);

C++ const std::string& getUserId() const;

.NET public string UserId { get; set; }

Property: CorrelationId

C++ void setCorrelationId(const std::string&);

C++ const std::string& getCorrelationId() const;

.NET public string CorrelationId { get; set; }

Property: Priority

C++ void setPriority(uint8_t);

C++ uint8_t getPriority() const;

.NET public byte Priority { get; set; }

Property: Ttl

C++ void setTtl(Duration ttl);

C++ Duration getTtl() const;

.NET public Duration Ttl { get; set; }

Property: Durable

C++ void setDurable(bool durable);

C++ bool getDurable() const;

.NET public bool Durable { get; set; }

Property: Redelivered

C++ bool getRedelivered() const;

C++ void setRedelivered(bool);

.NET public bool Redelivered { get; set; }

Method: SetProperty

C++ void setProperty(const std::string&, const qpid::types::Variant&);

.NET public void SetProperty(string name, object value);

Property: Properties

C++ const qpid::types::Variant::Map& getProperties() const;

C++ qpid::types::Variant::Map& getProperties();

.NET public Dictionary<string, object> Properties { get; set; }

The .NET Binding for the
C++ Messaging Client

45

.NET Binding Class: Message

Language Syntax

Method: SetContent

C++ void setContent(const std::string&);

C++ void setContent(const char* chars, size_t count);

.NET public void SetContent(byte[] bytes);

.NET public void SetContent(string content);

.NET public void SetContent(byte[] bytes, int offset, int size);

Method: GetContent

C++ std::string getContent() const;

.NET public string GetContent();

.NET public void GetContent(byte[] arr);

.NET public void GetContent(Collection<object> __p1);

.NET public void GetContent(Dictionary<string, object> dict);

Method: GetContentPtr

C++ const char* getContentPtr() const;

.NET n/a

Property: ContentSize

C++ size_t getContentSize() const;

.NET public ulong ContentSize { get; }

Struct: EncodingException

C++ struct EncodingException : qpid::types::Exception

.NET n/a

Method: decode

C++ void decode(const Message& message, qpid::types::Variant::Map& map, const std::string&
encoding = std::string());

C++ void decode(const Message& message, qpid::types::Variant::List& list, const std::string&
encoding = std::string());

.NET n/a

Method: encode

C++ void encode(const qpid::types::Variant::Map& map, Message& message, const std::string&
encoding = std::string());

C++ void encode(const qpid::types::Variant::List& list, Message& message, const std::string&
encoding = std::string());

.NET n/a

Method: AsString

C++ n/a

.NET public string AsString(object obj);

.NET public string ListAsString(Collection<object> list);

.NET public string MapAsString(Dictionary<string, object> dict);

The .NET Binding for the
C++ Messaging Client

46

2.3.6. .NET Binding for the C++ Messaging API Class:
Receiver

Table 2.14. .NET Binding for the C++ Messaging API Class: Receiver

.NET Binding Class: Receiver

Language Syntax

C++ class Receiver

.NET public ref class Receiver

Constructor

.NET Constructed object is returned by Session.CreateReceiver

Copy constructor

C++ Receiver(const Receiver&);

.NET public Receiver(Receiver receiver);

Destructor

C++ ~Receiver();

.NET ~Receiver();

Finalizer

C++ n/a

.NET !Receiver()

Copy assignment operator

C++ Receiver& operator=(const Receiver&);

.NET public Receiver op_Assign(Receiver rhs);

Method: Get

C++ bool get(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Get(Message mmsgp);

.NET public bool Get(Message mmsgp, Duration durationp);

Method: Get

C++ Message get(Duration timeout=Duration::FOREVER);

.NET public Message Get();

.NET public Message Get(Duration durationp);

Method: Fetch

C++ bool fetch(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Fetch(Message mmsgp);

.NET public bool Fetch(Message mmsgp, Duration duration);

Method: Fetch

C++ Message fetch(Duration timeout=Duration::FOREVER);

.NET public Message Fetch();

.NET public Message Fetch(Duration durationp);

Property: Capacity

The .NET Binding for the
C++ Messaging Client

47

.NET Binding Class: Receiver

Language Syntax

C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available

C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsettled

C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Method: Close

C++ void close();

.NET public void Close();

Property: IsClosed

C++ bool isClosed() const;

.NET public bool IsClosed { get; }

Property: Name

C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session

C++ Session getSession() const;

.NET public Session Session { get; }

2.3.7. .NET Binding for the C++ Messaging API Class:
Sender

Table 2.15. .NET Binding for the C++ Messaging API Class: Sender

.NET Binding Class: Sender

Language Syntax

C++ class Sender

.NET public ref class Sender

Constructor

.NET Constructed object is returned by Session.CreateSender

Copy constructor

C++ Sender(const Sender&);

.NET public Sender(Sender sender);

Destructor

C++ ~Sender();

The .NET Binding for the
C++ Messaging Client

48

.NET Binding Class: Sender

Language Syntax

.NET ~Sender();

Finalizer

C++ n/a

.NET !Sender()

Copy assignment operator

C++ Sender& operator=(const Sender&);

.NET public Sender op_Assign(Sender rhs);

Method: Send

C++ void send(const Message& message, bool sync=false);

.NET public void Send(Message mmsgp);

.NET public void Send(Message mmsgp, bool sync);

Method: Close

C++ void close();

.NET public void Close();

Property: Capacity

C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available

C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsettled

C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Property: Name

C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session

C++ Session getSession() const;

.NET public Session Session { get; }

The .NET Binding for the
C++ Messaging Client

49

2.3.8. .NET Binding for the C++ Messaging API Class:
Session

Table 2.16. .NET Binding for the C++ Messaging API Class: Session

.NET Binding Class: Session

Language Syntax

C++ class Session

.NET public ref class Session

Constructor

.NET Constructed object is returned by Connection.CreateSession

Copy constructor

C++ Session(const Session&);

.NET public Session(Session session);

Destructor

C++ ~Session();

.NET ~Session();

Finalizer

C++ n/a

.NET !Session()

Copy assignment operator

C++ Session& operator=(const Session&);

.NET public Session op_Assign(Session rhs);

Method: Close

C++ void close();

.NET public void Close();

Method: Commit

C++ void commit();

.NET public void Commit();

Method: Rollback

C++ void rollback();

.NET public void Rollback();

Method: Acknowledge

C++ void acknowledge(bool sync=false);

C++ void acknowledge(Message&, bool sync=false);

.NET public void Acknowledge();

.NET public void Acknowledge(bool sync);

.NET public void Acknowledge(Message __p1);

.NET public void Acknowledge(Message __p1, bool __p2);

Method: Reject

The .NET Binding for the
C++ Messaging Client

50

.NET Binding Class: Session

Language Syntax

C++ void reject(Message&);

.NET public void Reject(Message __p1);

Method: Release

C++ void release(Message&);

.NET public void Release(Message __p1);

Method: Sync

C++ void sync(bool block=true);

.NET public void Sync();

.NET public void Sync(bool block);

Property: Receivable

C++ uint32_t getReceivable();

.NET public uint Receivable { get; }

Property: UnsettledAcks

C++ uint32_t getUnsettledAcks();

.NET public uint UnsetledAcks { get; }

Method: NextReceiver

C++ bool nextReceiver(Receiver&, Duration timeout=Duration::FOREVER);

.NET public bool NextReceiver(Receiver rcvr);

.NET public bool NextReceiver(Receiver rcvr, Duration timeout);

Method: NextReceiver

C++ Receiver nextReceiver(Duration timeout=Duration::FOREVER);

.NET public Receiver NextReceiver();

.NET public Receiver NextReceiver(Duration timeout);

Method: CreateSender

C++ Sender createSender(const Address& address);

.NET public Sender CreateSender(Address address);

Method: CreateSender

C++ Sender createSender(const std::string& address);

.NET public Sender CreateSender(string address);

Method: CreateReceiver

C++ Receiver createReceiver(const Address& address);

.NET public Receiver CreateReceiver(Address address);

Method: CreateReceiver

C++ Receiver createReceiver(const std::string& address);

.NET public Receiver CreateReceiver(string address);

Method: GetSender

C++ Sender getSender(const std::string& name) const;

The .NET Binding for the
C++ Messaging Client

51

.NET Binding Class: Session

Language Syntax

.NET public Sender GetSender(string name);

Method: GetReceiver

C++ Receiver getReceiver(const std::string& name) const;

.NET public Receiver GetReceiver(string name);

Property: Connection

C++ Connection getConnection() const;

.NET public Connection Connection { get; }

Property: HasError

C++ bool hasError();

.NET public bool HasError { get; }

Method: CheckError

C++ void checkError();

.NET public void CheckError();

2.3.9. .NET Binding Class: SessionReceiver

The SessionReceiver class provides a convenient callback mechanism for Messages received by all
Receivers on a given Session.

using Org.Apache.Qpid.Messaging;
using System;

namespace Org.Apache.Qpid.Messaging.SessionReceiver
{
 public interface ISessionReceiver
 {
 void SessionReceiver(Receiver receiver, Message message);
 }

 public class CallbackServer
 {
 public CallbackServer(Session session, ISessionReceiver callback);

 public void Close();
 }
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging and
Org.Apache.Qpid.Messaging.SessionReceiver. The calling program creates a function that implements the
ISessionReceiver interface. This function will be called whenever message is received by the session. The
callback process is started by creating a CallbackServer and will continue to run until the client program
calls the CallbackServer.Close function.

The .NET Binding for the
C++ Messaging Client

52

A complete operating example of using the SessionReceiver callback is contained in cpp/bindings/qpid/
dotnet/examples/csharp.map.callback.receiver.

