1 #ifndef PROTON_WORK_QUEUE_HPP 
    2 #define PROTON_WORK_QUEUE_HPP 
   28 #include "./internal/export.hpp" 
   29 #include "./internal/pn_unique_ptr.hpp" 
   33 #include <type_traits> 
   35 struct pn_connection_t;
 
   46 namespace internal { 
namespace v03 {
 
   50     virtual ~invocable() {}
 
   52     virtual invocable& clone() 
const = 0;
 
   53     virtual void operator() () = 0;
 
   57 struct invocable_cloner : invocable {
 
   58     virtual ~invocable_cloner() {}
 
   59     virtual invocable& clone()
 const {
 
   60         return *
new T(
static_cast<T const&
>(*
this));
 
   64 struct invocable_wrapper {
 
   65     invocable_wrapper(): wrapped_(0) {}
 
   66     invocable_wrapper(
const invocable_wrapper& w): wrapped_(&w.wrapped_->clone()) {}
 
   67     invocable_wrapper& operator=(
const invocable_wrapper& that) {
 
   68         invocable_wrapper newthis(that);
 
   72     invocable_wrapper(invocable_wrapper&& w): wrapped_(w.wrapped_) {}
 
   73     invocable_wrapper& operator=(invocable_wrapper&& that) {
delete wrapped_; wrapped_ = that.wrapped_; 
return *
this; }
 
   74     ~invocable_wrapper() { 
delete wrapped_; }
 
   76     invocable_wrapper(
const invocable& i): wrapped_(&i.clone()) {}
 
   77     void operator()() { (*wrapped_)(); }
 
   91     work(
const invocable& i): item_(i) {}
 
   94     void operator()() { item_(); }
 
   99     invocable_wrapper item_;
 
  106 struct work0 : 
public invocable_cloner<work0<R> > {
 
  117 template <
class R, 
class A>
 
  118 struct work1 : 
public invocable_cloner<work1<R,A> > {
 
  122     work1(R (* t)(A), A a) :
 
  130 template <
class R, 
class A, 
class B>
 
  131 struct work2 : 
public invocable_cloner<work2<R,A,B> > {
 
  136     work2(R (* t)(A, B), A a, B b) :
 
  137         fn_(t), a_(a), b_(b) {}
 
  144 template <
class R, 
class A, 
class B, 
class C>
 
  145 struct work3 : 
public invocable_cloner<work3<R,A,B,C> > {
 
  151     work3(R (* t)(A, B, C), A a, B b, C c) :
 
  152         fn_(t), a_(a), b_(b), c_(c) {}
 
  159 template <
class R, 
class T>
 
  160 struct work_pmf0 : 
public invocable_cloner<work_pmf0<R,T> > {
 
  164     work_pmf0(R (T::* a)(), T& h) :
 
  165         holder_(h), fn_(a) {}
 
  172 template <
class R, 
class T, 
class A>
 
  173 struct work_pmf1 : 
public invocable_cloner<work_pmf1<R,T,A> > {
 
  178     work_pmf1(R (T::* t)(A), T& h, A a) :
 
  179         holder_(h), fn_(t), a_(a) {}
 
  186 template <
class R, 
class T, 
class A, 
class B>
 
  187 struct work_pmf2 : 
public invocable_cloner<work_pmf2<R,T,A,B> > {
 
  193     work_pmf2(R (T::* t)(A, B), T& h, A a, B b) :
 
  194         holder_(h), fn_(t), a_(a), b_(b) {}
 
  197         (holder_.*fn_)(a_, b_);
 
  201 template <
class R, 
class T, 
class A, 
class B, 
class C>
 
  202 struct work_pmf3 : 
public invocable_cloner<work_pmf3<R,T,A,B,C> > {
 
  204     R (T::* fn_)(A, B, C);
 
  209     work_pmf3(R (T::* t)(A, B, C), T& h, A a, B b, C c) :
 
  210         holder_(h), fn_(t), a_(a), b_(b), c_(c) {}
 
  213         (holder_.*fn_)(a_, b_, c_);
 
  219 template <
class R, 
class T>
 
  220 work make_work(R (T::*f)(), T* t) {
 
  221     return work_pmf0<R, T>(f, *t);
 
  224 template <
class R, 
class T, 
class A>
 
  225 work make_work(R (T::*f)(A), T* t, A a) {
 
  226     return work_pmf1<R, T, A>(f, *t, a);
 
  229 template <
class R, 
class T, 
class A, 
class B>
 
  230 work make_work(R (T::*f)(A, B), T* t, A a, B b) {
 
  231     return work_pmf2<R, T, A, B>(f, *t, a, b);
 
  234 template <
class R, 
class T, 
class A, 
class B, 
class C>
 
  235 work make_work(R (T::*f)(A, B, C), T* t, A a, B b, C c) {
 
  236     return work_pmf3<R, T, A, B, C>(f, *t, a, b, c);
 
  240 work make_work(R (*f)()) {
 
  244 template <
class R, 
class A>
 
  245 work make_work(R (*f)(A), A a) {
 
  246     return work1<R, A>(f, a);
 
  249 template <
class R, 
class A, 
class B>
 
  250 work make_work(R (*f)(A, B), A a, B b) {
 
  251     return work2<R, A, B>(f, a, b);
 
  254 template <
class R, 
class A, 
class B, 
class C>
 
  255 work make_work(R (*f)(A, B, C), A a, B b, C c) {
 
  256     return work3<R, A, B, C>(f, a, b, c);
 
  262 namespace internal { 
namespace v11 {
 
  276         class = 
typename std::enable_if<!std::is_same<typename std::decay<T>::type,work>::value>::type
 
  278     work(T&& f): item_(std::forward<T>(f)) {}
 
  283     void operator()() { item_(); }
 
  288     std::function<void()> item_;
 
  298 template <
class... Rest>
 
  299 work make_work(Rest&&... r) {
 
  300     return std::bind(std::forward<Rest>(r)...);
 
  305 using internal::v11::work;
 
  306 using internal::v11::make_work;
 
  350     PN_CPP_EXTERN 
bool add(work fn);
 
  353     PN_CPP_EXTERN PN_CPP_DEPRECATED(
"Use 'work_queue::add(work)'") bool add(void_function0& fn);
 
  371     PN_CPP_EXTERN 
bool add(internal::v03::work fn);
 
  372     PN_CPP_EXTERN 
void schedule(
duration, internal::v03::work fn);
 
  378     internal::pn_unique_ptr<impl> impl_;
 
  382   friend class io::connection_driver;
 
A top-level container of connections, sessions, and links.
Definition: container.hpp:49
A span of time in milliseconds.
Definition: duration.hpp:39
Unsettled API - A context for thread-safe execution of work.
Definition: work_queue.hpp:327
work_queue()
Unsettled API - Create a work queue.
bool add(work fn)
Unsettled API - Add work fn to the work queue.
work_queue(container &)
Unsettled API - Create a work queue backed by a container.
A span of time in milliseconds.
Deprecated - Use the API in work_queue.hpp.
The main Proton namespace.
Definition: annotation_key.hpp:33
T get(const scalar &s)
Get a contained value of type T.
Definition: scalar.hpp:60
void swap(map< K, T > &, map< K, T > &)
Swap proton::map instances.